Let’s prove |PR|≤|PQ|+|QR| for the destances among 3 points P,Q,R∈Rn.
Denote P by (p1,⋯,pn), Q by (q1,⋯,qn), R by (r1,⋯,rn) .
When n=1
Let’s show √(r1−p1)2–√(q1–p1)2–√(r1–q1)2≤0 . This expression is symmetry for p1,r1, then suppose p1≤r1 .
If q1<p1≤r1
√(r1−p1)2–√(q1–p1)2–√(r1–q1)2=(r1–p1)–(p1–q1)–(r1–q1)=−2p1+2q1≤0
If p1≤q1≤r1
√(r1−p1)2–√(q1–p1)2–√(r1–q1)2=(r1–p1)–(q1–p1)–(r1–q1)=0
If p1≤r1<q1
√(r1−p1)2–√(q1–p1)2–√(r1–q1)2=(r1–p1)–(q1–p1)–(q1–r1)=2r1−2q1<0
When 0<n
Suppose the triangle inequality for n=k.
Then,
⎷k∑l=1(rl–pl)2≤
⎷k∑l=1(ql–pl)2–
⎷k∑l=1(rl–ql)2.
So,
k∑l=1(rl–pl)2≤⎛⎜⎝
⎷k∑l=1(ql–pl)2+
⎷k∑l=1(rl–ql)2⎞⎟⎠2≤k∑l=1(ql–pl)2+k∑l=1(rl–ql)2+2
⎷k∑l=1(ql−pl)2
⎷k∑l=1(rj−qj)2.
Now, let’s prove
⎛⎜⎝
⎷k+1∑l=1(rl–pl)2⎞⎟⎠2–⎛⎜⎝
⎷k∑l=1(ql–pl)2+
⎷k∑l=1(rl–ql)2⎞⎟⎠2≤0.
With the inequation for n=k and one for n=1, the expression can be writte as follows.
⎛⎜⎝
⎷k+1∑l=1(rl–pl)2⎞⎟⎠2–⎛⎜⎝
⎷k∑l=1(ql–pl)2+
⎷k∑l=1(rl–ql)2⎞⎟⎠2≤(rk+1−pk+1)2–(qk+1−pk+1)2–(rk+1−qk+1)2–2
⎷k+1∑l=1(ql−pl)2
⎷k+1∑l=1(rj−qj)2+2
⎷k∑l=1(ql−pl)2
⎷k∑l=1(rl−ql)2≤2√(qk+1–pk+1)2(rk+1–qk+1)2–2
⎷k+1∑l=1(ql−pl)2
⎷k+1∑l=1(rj−qj)2+2
⎷k∑l=1(ql−pl)2
⎷k∑l=1(rl−ql)2.
Now, define Ak, Bk, Ck, Dk as follows.
Ak=(qk+1–pk+1)2Bk=(rk+1–qk+1)2Ck=k∑l=1(ql−pl)2Dk=k∑l=1(rl−ql)2
With these A,B,C,D, the last inequation is writte n as:
2√AkBk–2√(Ak+Ck)(Bk+Dk)+2√BkDk.
To prove
√AkBk–√(Ak+Ck)(Bk+Dk)+√BkDk≤0
prove
(√AkBk+√BkDk)2≤√(Ak+Ck)(Bk+Dk)2.
(√AkBk+√BkDk)2–√(Ak+Ck)(Bk+Dk)2≤AkBk+BkDk+2√AkBkCkDk–AkBk–CkDk–AkDk–BkDk=2√AkBkCkDk–AkDk–BkCk=–(√AkDk–√BkCk)2≤0
Thus, the inequation is also true for n=k+1.
Readers who viewed this page, also viewed: