サッカーボールで使われている 5角形と6角形 の数を計算する では サッカーボールに使われている 5角形と6角形 の数を計算しました。 ここではその面の数について、別の方面から考えてみます。 オイラーの定理は使いません。
6角形の中心を結ぶ
サッカーボールにある6角形の中心を頂点とする多面体を考えます。 その多面体は1つの面が正5角形になり、また正5角形だけからなる立体です。 これは正12面体になりますね。
正12面体の面の数は、サッカーボールに含まれる正5角形の数と同じになります。 これよりサッカーボールの正5角形は12個とわかります。
正12面体の頂点の数は、正6角形の数と同じになります。 頂点の数は ( 5 times 12 div 3 = 20 ) です。
これよりサッカーボールの面の数は
[ 12 + 20 = 32 ] です。
サッカーボールの辺の数は、5角形と6角形の辺の数を足して、重複を取り除くことで
[ ( 5 times 12 + 6 times 20 ) div 2 = 90 ] と計算できます。
サッカーボールの頂点の数は、1つの頂点を3つの図形で共有していることから
[ ( 5 times 12 + 6 times 20 ) div 3 = 60 ] と計算できます。
正6角形の中心を頂点として多面体を考えましたが、5角形の中心を頂点として考えることもできます。
5角形の中心を結ぶ
サッカーボールにある5角形の中心を頂点とする多面体は正20面体になります。 作り方から考えてわかりますが、これは上で見た正12面体の面の中心を頂点とした多面体と同じです。
切頂多面体
正20面体の頂点を切ってみましょう。
正20面体の頂点を切ると、サッカーボールの形になります。 この頂点を切った正20面体のことを、切頂正20面体または切頭正20面体と呼びます。
正12面体も頂点を切ることでサッカーボールの形にできますが、深く切る必要があります。
サッカーボールには、正5角形と正6角形が使われています。 それぞれいくつ使われているのかを考えてみましょう。
オイラーの定理
多面体では次の等式が成り立つ。
頂点の数 – 辺の数 + 面の数 = 2
定理自体の証明は オイラーの多面体定理を考える に記述しました。
これを利用して、 5角形 の数 と 6角形 の数 を計算します。 ( サッカーボールと正多面体 ではオイラーの定理を使わずに計算しました。 )
計算
5角形の数を \( m \) , 6角形の数を \( n \) とします。
サッカーボールは、1つの頂点に3つの図形の点が重なっているため サッカーボール全体で 頂点の数は \(\frac{5m + 6n}{3}\) 。 変の数は \(\frac{5m + 6n}{2}\) 、 面の数は \(m + n\) 。
オイラーの定理より、次の式が成り立つ。
$$ \frac{5m + 6n}{3} – \frac{5m + 6n}{2} + m + n = 2 $$
この等式を簡単にすると
$$ m = 12 . $$
サッカーボールを見ると、 5角形 の周りには 6角形 は5つあり、 6角形 は必ず 3つ の 5角形 に接している。 これより
$$ n = \frac{5 m}{3} = \frac{5 \times 12}{3} = 20 . $$
以上より、 5角形 と 6角形 はそれぞれ 12, 20個 あることがわかる。
デカルトの定理を使っても、同じように計算することができます。 デカルトの定理は 多面体 デカルトの定理を証明するに書きました。
補足
C60 のフラーレンもサッカーボールの形です。 せっかくなので頂点の数が 60 になるのか確かめてみましょう。
$$ \frac{5m + 6n}{3} = \frac{5 \times 12 + 6 \times 20}{3} = 60 . $$
参考
オイラーの定理は下の本にも載っています。 レベル的には中学生向けの ハンドブックです。 私も使っていました。
A Life Summary of an Gypsy